HYDROCAL 1006 genX

Online-Analysesystem für gelöste Gase (DGA) und Feuchtigkeitsanalyse für Leistungstransformatoren und ölgefüllte elektrische Geräte

Der neue HYDROCAL 1006 genX ist die erste wirklich wartungsfreie Multi-Gas-Online-DGA-Lösung, die bewährte Nahinfrarot-Messtechnologie (NIR) mit vakuumgeschützter Membranextraktion kombiniert.

Da Wasserstoff (H_2) an fast jedem Fehler des Isolationssystems von Leistungstransformatoren beteiligt ist und Kohlenmonoxid (CO) ein Zeichen für eine Beteiligung der Zellulose- / Papierisolierung ist, klassifiziert das Vorhandensein und die Zunahme von Acetylen (C_2H_2) zusätzlich die Art eines Fehlers als Überhitzung, Teilentladung oder Hochenergiebogenbildung.

Die zusätzliche Messung von Äthylen (C_2H_4) und Methan (CH_4) dient der weiteren Analyse, z.B. Duval-Dreieck nach IEC 60599

Vorteile und Besonderheiten

- Individuelle Messung von Wasserstoff (H₂), Kohlenmonoxid (CO) und Azetylen (C₂H₂), Methan (CH₄) and Äthylen (C₂H₄)
- Messung der Ölfeuchte (H₂O)

- Einfache Installation an einem Transformatorventil (G 1½" DIN ISO 228-1 oder 1½" NPT ANSI B 1.20.1)
- Installation am laufenden Transformator, ohne diesen ausser Betrieb setzen zu müssen
- Wartungsfreies System durch weniger bewegliche Teile
- Fortschrittliche Software (am Gerät und via PC) mit intuitiver Bedienung durch 7" Farb-TFT kapazitiven Touchscreen, WLAN und Webserver Bedienung von jedem Smartphone, Tablett oder Notebook-PC aus
- Kommunikationsschnittstellen ETHERNET 10/100 Mbit/s (Kupfer / RJ45 oder Lichtwellenleiter / SC Duplex) und RS 485 Schnittstellen um die proprietäre Kommunikation mittels MODBUS®RTU/ASCII, MODBUS®TCP, DNP3 und Protokolle nach IEC 61850 zu unterstützen
- Optionales externes I/O-Modul

Technische Daten HYDROCAL 1006 genX

Optionale Nominal spannungen Netzanschluss: 120 V -20% +15% AC 50/60 Hz ¹⁾ oder 230 V -20% +15% AC/DC 50/60 Hz ¹⁾ oder

130 V +15% DC ¹⁾

Leistungsaufnahme: 240 VA Gehäuse: Aluminium

Abmessungen: B 250 x H 250 x T 286 mm

Gewicht: ca. 8.0 kg
Betriebstemperatur: -55°C ... +55°C

(Umgebung) (unter -10°C Anzeige Funktion verriegelt)

Öltemperatur: -20°C ... +105°C

(im Transformator)

Lagertemperatur: -20°C ... +65°C

(Umgebung)

Druck am Öleinlass: 0 ... 800 kPa

Ventilanschluss: G 1½" DIN ISO 228-1 oder

11/2" NPT ANSI B 1.20.1

Sicherheit IEC 61010-1
Schutzisoliert: Class 1
Schutzart: IP-55

Digitale Ausgänge (Standard)

3 x Digitale Ausgänge		Max. Schaltleistung (Freie Zuweisung)	
Тур	Steuerspannung		
3 x Relais	12V	220V DC / 250V AC / 2A / 60W / 62.5VA	

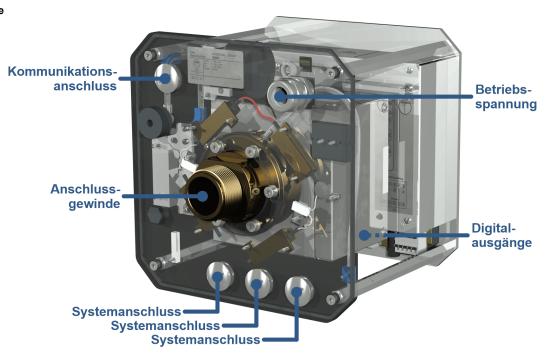
Kommunikation

- 1 x RS 485 (Eigenes oder MODBUS® RTU/ASCII Protokoll)
- ETHERNET 10/100 Mbit/s Kupfer / RJ 45 oder Lichtwellenleiter / SC Duplex (Eigenes oder MODBUS® TCP Protokoll)
- IEC 61850 (Option)
- DNP3 serielles Modem oder GPRS/UMTS Modem (Option)
- HTML Protokol. WLAN und Webserver, Bedienung von jedem Telefon, Tablett oder Notebook-PC aus möglich

Bemerkungen

1)	120 V ⇒ 120 V -20% = 96 V _{min}	120 V +15% = 138 V _{max}
	230 V ⇒ 230 V -20% = 184 V _{min}	230 V +15% = 264 V _{max}
	130 V ⇒ 130 V = 130 V _{min}	130 V +15% = 149 V _{max}

Arbeitsprinzip


- Diffusionsprinzip mit gasdurchlässiger Membran mit Copolymerisat
- Mikroelektronischer Gassensor für H₂ Messung
- Nah-Infrarot Gassensoreinheit für CO, CH₄, C₂H₂ und C₂H₄
- Kapazitiver Dünnfilm-Feuchtesensor für H₂O Messung
- Temperatursensoren
 - (Öltemperatur, Gastemperatur, Rückwandtemperatur)

Messungen

Gas/Feuchte in Öl Messung	Genauigkeit ²⁾³⁾			
Messgrösse	Bereich	Gasextraktion	Gasmessung	
Wasserstoff H ₂	0 10000 ppm	≤ ± 8% ± 4 ppm	≤ ±10 % ± 20 ppm	
Kohlenmonoxid CO	0 10000 ppm	≤ ± 8% ± 30 ppm	≤ ±10 % ± 5 ppm	
Azetylen C ₂ H ₂	0 10000 ppm	≤ ± 8% ± 4 ppm	≤ ±10 % ± 5 ppm	
Methan CH ₄	0 10000 ppm	≤ ± 8% ± 4 ppm	≤ ±10 % ± 10 ppm	
Äthylen C₂H₄	0 10000 ppm	≤ ± 8% ± 4 ppm	≤ ±10 % ± 5 ppm	
Analyse gelöster Feuchtigkeit				
Messgrösse	Bereich	Genauigkeit		
Gelöste Feuchtigkeit im Öl (H₂O) – relativ [%]	0 100 %	≤±3%		
im Mineralöl – absolut [ppm]	0 100 ppm	≤ ± 3% ± 3 ppm		
im Esteröl – absolut [ppm] ⁴⁾	0 2000 ppm	≤ ± 3 % von MSC ⁵⁾		

²lln Bezug auf Umgebungstemperatur +20°C und Öltemperatur +55°C | ³lGenauigkeit der Ölfeuchte für mineralische Öl-Typen

Anschlüsse

⁴⁾Option | ⁵⁾Moisture Saturation Content (Feuchtigkeitssättigungsgehalt)